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Abstract .  Multilevel programming is developed to solve the decentralized problem in which 
decision makers (DMs) are often arranged within a hierarchical administrative structure. The 
linear bilevel programming (BLP) problem, i.e., a special case of multilevel programming prob- 
lems with a two level structure, is a set of nested linear optimization problems over polyhedral 
set of constraints. Two DMs are located at the different hierarchical levels, both controlling one 
set of decision variables independently, with different and perhaps conflicting objective functions. 
One of the interesting features of the linear BLP problem is that its solution may not be Pareto- 
optimal. There may exist a feasible solution where one or both levels may increase their objective 
values without decreasing the objective value of any level. The result from such a system may be 
economically inadmissible. If the decision makers of the two levels are willing to find an efficient 
compromise solution, we propose a solution procedure which can generate effcient solutions, with- 
out finding the optimal solution in advance. When the near-optimal solution of the BLP problem 
is used as the reference point for finding the efficient solution, the result can be easily found during 
the decision process. 

Keywords: Hierarchical Decision Making, Bilevel Programming, Bicriteria Programming, Effi- 
lent Solution. 

1. I n t r o d u c t i o n  

Multi level  p r o g r a m m i n g  (MLP)  is developed to solve the decentral ized problem in 
which decision makers  (DMs) are often a r ranged  wi th in  a hierarchical  admin i s t ra -  
tive s t ruc ture .  The  l inear  bilevel p rog ramming  (BLP) problem,  i.e., a special case 
of the  MLP problems with a two-level s t ruc ture ,  is a set of nes ted l inear opt imiza-  
t ion  problems over polyhedra l  const ra ints .  Two DMs are located at  the different 
hierarchicM levels, bo th  of them control l ing only one set of decision variables inde- 

pendent ly ,  with different and  perhaps  conflicting object ive  funct ions.  Control  over 
the decision variables  is pa r t i t ioned  between the two levels; however, the decision 
variables of one level may  affect the object ive value of the other.  

The  formal  fo rmula t ion  of the l inear  BLP problem is defined by Candler  and  

Townsly [6], as well as F o r t u n y - A m a t  and McCar l  [7]. The  problem to be considered 
in this paper  has the following common characterist ics:  

1. There  exist in te rac t ing  decis ion-making uni t s  wi th in  a p r e domi na n t l y  hierarchi-  
cal s t ruc ture .  
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2. The execution of decisions is sequential, from higher to lower level. The lower- 
level DM (LLDM) executes its policies after, and in view of, the decisions of 
the higher-level DM (HLDM). 

3. Each decision-making unit optimizes its own objective function independently 
of other units, but is affected by the actions and reactions of other units. 

4. The external effect on a decision-maker's problem can be reflected in both his 
objective function and his set of feasible decisions. 

Let a vector of decision variables (z, y) E R n be partitioned among the HLDM 
and the LLDM. The HLDM controls over the vector z E R ~1 while the LLDM 
control over the vetor y E R n2, where nl + n2 = n. Furthermore, assuming that  
the funtion F, f : R n ) R 1 are linear and bounded, the linear BLP problem can 
be stated as follows (see [4], [12]): 

PI: max~ F ( z , y ) = a z + b y  

where y solves 

P2: max~ f ( z ,  y) = cz q- dy 

s.t. A z  + By  < r 

where a,c E R nl, b,d E R n2, r E Fl m, A is an (m × nl)-matrix,  and B is an 
( m x  n2)-matrix. Let S C R n denote the feasible region of (z, y), i.e., S = {(z, y) I 
Ax  + By  < r}. For a given z, let Y(z) denote the set of optimal solutions to the 
inner problem, P2, 

max ](y) = dy, 
yeQ(~) 

where Q(x) = {y I By  <_ r - Ax} ,  and represent the HLDM's solution space or the 
set of rational reactions of f over S, as 

¢ I ( s )  = I e e 

S and Q(z) are assumed here to be bounded and non-empty. For a given z, 
the choice of y is reduced to a linear programming problem. The definitions of 
feasibility and optimality for the linear BLP problem are then given as follows: 

DEFINITION 1 A point (z, y) is called feasible i f  (x, y) E ¢] (S). 

DEFINITION 2 A feasible point (x*, y*) is called optimal i f  F(z*,  y*) is unique for 
all y* ~ Y(z*)  and F (x ' ,  y*) > F(x ,  y) for all feasible pair (z, y) ~ ¢1(S). 

The multiple criteria programming (MCP) problem seeks a simultaneous com- 
promise solution among the various goals of different divisions (see [9], [14]). Such 
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technique assumes that  all objectives are those of a single DM, or a coherent group 
of DMs and cannot fully account for the independent behaviour of each division. 
The bicriteria programming (BCP) problem with only two objectives is a special 
case of the MCP problems. The linear BCP problem is stated as follows: 

P3: max (F(x ,y) ,  f ( x ,  y)) 

s.t. Ax + By  <_ r. 

The notations for the BCP problem are the same as those for the BLP problem in 
this paper. Some well known definitions and theorems are presented as follows (see 
[10], [15]): 

DEFINITION 3 A point z is called feasible i f  z E S. 

DEFINITION 4 A feasible point x ° is called efficient or nondominated i f  there exists 
no other feasible z, such that F(x)  > F ( x  °) and f ( z )  > f ( z  °) with at least one 
inequality holding. 

THEOREM 1 A feasible point z ° is efficient i f  and only i f  there exists a A E (0, 1) 
such that z ° is optimal for 

P4: max )~f(x, y) h- (1 -- )~)F(x, y) 

s.t. A x  + By  < r. 

THEOREM 2 A point z ° that is the unique solution of maximizing any of the two 
objective functions subject to S, is efficient. 

One of the interesting features of the linear BLP problem is that  its solution may 
not be efficient (see [1], [5], [12]), i.e., there may exist at least one feasible solution 
where one or both DMs could increase their objective value without decreasing 
the objective value of the other level. The result from such a system may be 
economically inadmissible. For example, in a network design problem described by 
Ben-Ayed et al. [3], the modification of a transportation system is concerned by 
adding new link or improving existing ones. The objective of the system planner 
(HLDM) is to minimize total  system costs consisting of system travel costs by users 
(LLDM) and investment costs. However, the objectives of the users are to maximize 
their individual utility functions, which may conflict with the optimal solution for 
the system. If the solution of the bilevel network design problem is non-Pareto 
optimal, the HLDM could maintain the total system costs, such as by increasing 
investment cost and decreasing the system travel costs, so as to increase the users' 
individual utility functions and then find an efficient solution. 



298 UE-PYNG WEN AND SEN-FON LIN 

Under the assumption that the cooperation between both DMs is allowed and 
both DMs are willing to cooperate when the optimal solution has been found inef- 
ficient, Wen and Hsu [13] have presented a post-optimality analysis for obtaining 
the efficient solution. They suggest several efficient compromise solutions based on 
the DMs' preference. However, the optimal solution must be identified before the 
post-optimality analysis, which is quite time-consuming owing to the complexity of 
the problem (see [2], [11]). In this paper, a solution procedure is proposed to gener- 
ate efficient conpromise solutions, without finding the optimal solution in advance. 
The cooperative BLP problem and its related characteristics are described in the 
next section. In the third section, an efficient approach based on goal setting by 
DMs is proposed. A numerical example is presented, and concluding remarks are 
finally made. 

2. The  Coopera t ive  BLP  

When cooperation is allowed and the two DMs are willing to cooperate, the BLP 
problem turns into the cooperative BLP problem. In the cooperative BLP problem, 
the concept, coalition, is adopted here which implies that the two DMs become as 
one in searching for the efficient solution. They maximize the cooperative objective 
function derived from their original objective functions over a revised constraint 
region. Before the definition of the cooperative objective function is stated, we 
assume that payoffs are in monetary terms, utility is linear in money, and interper- 
sonal comparisons are meaningful (see [8]). 

Let GH and GL be the acceptable objective level of the HLDM and LLDM, respec- 
tively, which are the minimum expected goals for both DMs during the cooperative 
process. 

DEFINITION 5 Let A E [0, 1] be a real value. The objective function of the coopera- 
tive BLP problem is 

Pb: F = A(f - GL) + (1 -- A)(F - G/~), 

where A e [0, i]. 

Let f - G L  and F - G H  be the bonus functions of both DMs, respectively. Then F 
is the linear combination of both DMs' bonus functions. Restated the cooperation 
includes determining the weight of each DM's bonus function for appearing in 
F. Actually, this is equivalent to determining the weight of each DM's objective 
function. 

DEFINITION 6 Let (x~, yx) be the cooperative efficient solution for the cooperative 
BLP problem. Consequently, the characteristic function, V, of the cooperative BLP 
problem is the summation of both DMs' objective values, i.e., V = F(xx,y~) + 
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Restated V is the total payoff to the coalition. The characteristic function works 
only when the payoffs of both DMs are expressed both in monetary terms. 

The subsequent problem of the cooperative BLP is the allocation of the payoffs 
between the members of the coalition, which is called an imputation. This involves 
the payments that the individual DM may receive. Known as individual rationality, 
of course no DM will consent to receive less than their own goal values. Before 
stating the approach to find the cooperative efficient solution, Definitions of side 
payments and imputations are provided. 

DEFINITION 7 The side payment between the DMs involve exchanging of bonuses 
between the members of a coalition to equalize any surplus from their cooperation. 

Here, the bonus is equal to the difference between each DM's payoff and his 
cooperative goal value, i.e., the extra payoff from the cooperation of both DMs. 

DEFINITION 8 If  side payments exist, then the bonus to each DM is p = ( F -  GH q- 
/ - G L ) / 2 .  

DEFINITION 9 An imputation for the cooperative BLP  problem is a vector z = 
( zl , z2) satisfying 

(i) V = Z l + Z 2  

(ii) zl >_ GH 

z2 > GL, 

where zi denotes the amount received by the ith DM. (i) represents the collective 
rationality and (ii) represents the individual rationality. 

The definitions of side payments and imputations exist only when the payoffs are 
in monetary terms. 

When the optimal solution to the BLP problem is efficient, no cooperative solution 
that could benefit both DMs more than the optimal solution does. In this case, 
due to the asymmetric structure of the BLP problem, the cooperative solution is 
justified under the assumption that satisfying the HLDM is more important than 
the LLDM. On the other hand, when the optimal solution to the BLP problem is 
inefficient, two types of approaches are presented to find the cooperative efficient 
solutions. 

Firstly, if the payoffs are expressed in monetary terms but without side payments, 
then the following parametric LP is used to find the cooperative efficient solution: 
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P6: max 

s.t. 

~ ( / -  ok)  + (1 - a) (F - OH) = a / +  (1 - A)F 

Ax + By < r 

F > G H  

Y> OL, 

where A E [0, 1] and F >_ GH and f >_ GL are called the goal-value constraints. 
That  is, if the solution to the maximization of F over the entire constraint region 
with goal-value constraints included is (x, y) when ~ is given, then the imputation 
is (F(z, y), f (x ,  y)). Note that  in the cooperative BLP problem )~f + (1 - A)F is 
equivalent to ~ ( f  - GL) + (1 -- )~)(F - GH) in Ph. 

Let S 6 denote the constraint set in P6. The following lemma demonstrates the 
relationship between the efficient points of S 6 and S. 

LEMMA 1 . Assume that there exists non-degeneracy in P6, then an efficient point 
to max(F, f)  over S 6 is also efficient to max(F, f )  over S. 

Proof :  Let (~, .0) be an efficient point to m~x(F,.f) over S 6. We h~ve 

F(e ,  9) > C ~  

y(~, ~) > a~ .  

Suppose (~,, Y) is not an efficient solution to max(F, f )  over S, then there exists 
a point (~, ~)) E S such that  F(~,  ~)) > F(~', Y) and f(~,  ~)) > f(~', ~9) for at least 
one inequality holds. This implies that F($, fl) >_ GH and f(~,  fl) > GL. By the 
definition of S 6, it follows that  (~, ~)) E S 6. This contradicts with the efficiency of 
(~, 9) ~ s 6. • 

Lemma 2 guarantees that  the efficient solutions found in P6 are also efficient to 
max(F, f)  over S. 

Secondly, if the payoffs are expressed in monetary terms and side payments exist, 
the following parametric LP is used to find the cooperative efficient solution: 

P7: max A ( f -  GL) + (1-- A ) ( F -  GH) = A f +  (1-- A)F 

s.t. Ax + By < r. 

The imputation in this case is (GH + p, GL + p). When side payments exist, we 
have the following lemma: 

LEMMA 2 Assume that there exists non-degeneracy in PT. With side payments 
existing, only one efficient imputation exists in P7 when .k = 0.5. 

P roof :  Let p = ( F - G z c + f - G L ) / 2 .  With side payments existing, (GH+p, GL+p) 
is the form for all imputations. Suppose there are at least two efficient solutions, 
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say, when )~ = 0.5 and )~ = 5,. For )~ = 0.5 and ~ = ~, the corresponding efficient 
solutions are (x0.5, Y0.5) and (xX, YX), respectively. But we have F(xo.5, Yo.5) + 
f(xo.5,yo.5) >_ F(xx, yx) + f(xX, yx). Therefore P0.5 >__ PX. This contradicts with 
the efficiency of (x~, y~). • 

The important step not yet considered here is goal setting for each DM. The 
algorithm, including goal setting, is proposed in the following section for finding 
the cooperative solution. 

3. Efficient Solu t ions  for  B L P  

3.1. B o u n d s  on H L D M  

Bialas and Karwan [5] have proposed the algorithm for searching the local optimal 
solution to the BLP problem. This algorithm basically employs the simplex method 
for bounded variables as a tool in the solution procedure. Although it can only 
guarantee the local solution to the BLP problem, it plays a crucial role in its 
computational efficiency and its employment within algorithms to find the global 
optimum. This local optimal solution procedure is denoted here by algorithm L. 

Let HLB denote the lower bound and HUB denote the upper bound on the objec- 
tive value of the HLDM. We can find the maximum of cx over the entire constraint 
region S, and set to HuB, and find the local optimal via algorithm L and set its 
objective value to HLB. 

3.2. B o u n d s  on L L D M  

Generally speaking, no absolute relationship occurs between the optimal objective 
values of both DMs (except for some special cases). Now, the bounds on the HLDM 
are obtained, and by Definition 2, the optimal solution of the BLP problem must be 
between the lower and the upper bounds of the HLDM. Therefore, the lower and 
upper bounds are defined respectively, as finding the minimum and the maximum of 
the LLDM's objective function over the entire constraints with two more bounding 
constraints by the HLDM, as shown in the following: 

P8: max f 

s.t. Ax + By <_ r 

F <_ HuB 

F ~_ HLB. 
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P9: rain f 

s.t. Ax + By < r 

F <_ HUB 

F ~_ HLB. 

P8 finds the upper bound, LUB, and P9 provide the lower bound, LLB. The two 
additional constraints guarantee that  the optimal solution of the LLDM would exist 
between the bounds of the HLDM. 

3.3. G o a l  S e t t i n g  a n d  C o o p e r a t i v e  Eff ic ient  S o l u t i o n  

The linear combination of the bounds is used in this section to find the near- 
optimal solution for each DM. There is no indication that the optimal solution of 
the HLDM is closer to the HLDM's lower bound or the upper bound. Therefore, the 
HLDM's upper bound and the lower bound can be simply multiplied by an arbitrary 
positive value between 0 and 1 and, subsequently, find a near-optimal solution of 
the HLDM. For the HLDM, however, assuming that the optimal solution is closer 
to the HLDM's lower bound is reasonable because the lower bound is derived from 
a feasible solution and such feasible solution is at least a local solution. For the 
LLDM, insufficient evidence can not verify whether the optimal solution is closer 
to the LLDM's upper bound or the lower bound. Therefore, for the LLDM, the 
near optimal solution is estimated from the middle point of the LLDM's bounds. 

Let GH denote the goal value of the HLDM, GL denote the goal value of the 
LLDM. Then 

GH = 8HLB + (1 -- 8)HUB, (1) 

where 0 is the arbitrary value and 0 < 0 < 1. 

GL = LUB/2 + LLB/2. (2) 

In (1) we have shown that when ~ is setting at 1, it indicates that  the lower bound 
is the optimal solution for the HLDM. 

If both DMs have their own goal values and agree to cooperate in order to search 
for the efficient solution, the cooperative objective function should then be formed. 
If side payments do not exist, P6 has been proposed which subsequently yields an 
efficient solution. In P6, (1 - A) and A denote the weights for the HLDM and 
the LLDM, respectively. If side payments exist, P7 has been proposed which will 
provide an efficient solution. 
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4. A Numer ica l  Example  

The efficient solutions generated procedure in previous section is illustrated in the 
following by a numerical example to describe its results. The results demonstrated 
in the decision space are depicted in Figure 1. 

EXAMPLE 1 

P h  max F = -2x  + l l y  where y solves 

P2: max f = - x - 3 y  

s.t. x - 2 y < _ 4 ,  

2x - y ~ 24, 

3x + 4y _~ 96, 

x + 7y < 126, 

-4x  + 5y ~ 65, 

z + 4y >_ 8, 

x~_O, 

y~_O. 

Firstly, the maximum value of -2x  + l l y  over the entire constraint region S is 
179.04, and the solution ($, ~) = (5.3, 17.24). Therefore, HuB is set to 179.04. 
Then we found that the local optimal solution is (0, 2) and the local optimum is 22 
by algorithm L. Then we set HLB to 22. 

We further solve P8 and P9 as follows: 

P8: max f - - x - 3 y  

s.t. (x,y) e s ,  

-2x  + l l y  >_ 22, 

-2x  + l l y  < 179.04. 

P9: min f = - x - 3 y  

s.t. (x, y) • s, 

-2x  + l l y  > 22, 

-2x  + l l y  < 179.04. 

We have LuB = - 6  and LLB = --59.65. Then the Goal settings for both DMs will 
be 
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H =  (5.3, 17.24) 

, (0, 2) e j  ( s )  . . . . . . .  
" " . . . . . . . . . . . . . . . . - -  E 

B =  (0, 1 0 . 9 4 ) S '  ~ _ _ ~ ~  
~ . . .  ." A= (17.45, 10.91) 

. "  
~ ° .  

c =  (0, 8.24) S .. 

. *  

° 

Figure 1. An Illustrative Example 

G/t = t~(22) + (1 - ~)(179.04) 

c L  = ½( -6 )  + ½(-~9 .65)  = -32 .83 .  

By selecting t~ = 0.55, we have GH = 92.67. Figure 1 shows the revised constraint 
region (the hatched region) for P6. 
Without side payment: 

Case  1. Let A be 0, i.e., we mostly emphasize the bonus for the HLDM. In this 
case, P6 can be formulated as follows: 

P6: m a x  

s.t. 

F = -2x + 11y 

(~,y) e s, 

- 2 x  + l l y  > 92.67, 

- x  - 3y ~ -32 .83 .  

The solution to P6 is B = (0, 10.94) and the imputation is (120.34, -32.82) .  

Case  2. Let )~ be 4/5~ i.e., the weights for the bonuses of the HLDM and LLDM 
are 1/5 and 4/5,  respectively. In this case, P6 has the following form: 
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P6: m a x  

s . t .  

4 1(-2z + lly) + g(-* - 3y) 

(*, ~) e s, 

--2,  + l l y  > 92.67, 

- ,  -- 3y < --32.83. 

The solution to P6 is C = (0, 8.24). The imputation is (92.67, -25.26). 

With side payments: 
We have P7 as follows: 

1 P7: max } ( - 2 .  + l ly)  + ~ ( - z -  3y) 

s.t. (z,y) e S .  

By solving P7, we have H = (5.3, 17.24) as the cooperative solution. By Defini- 
tion 9, the bonus p to each DM is 31.09. The imputation is (123.76,-1.74). 

From Figure 1, the optimal solution of the BLP is obtained as Status: RO 
A -- (17.45, 10.91), its objective function vector is (85.11,-50.18) and it is ineffi- 

cient. S' be the set of points satisfying the following system of inequalities: 

A* + B Y  <_ r, 

F(x, y) _> F(17.45, 10.91), 

.f(,, y) > I(17.45, 10.91). 

Furthermore, the cooperative solutions of all the three cases above benefit both the 
HLDM and LLDM more than A does. 

5. Conclusions 

The solution to the BLP problem may not be efficient and the existing algorithm 
takes time in computation for solving the BLP problem. In this study, the near- 
optimal value of both DMs is used as the goal value which is the minimum level 
that both DMs would accept when cooperation is allowed. Furthermore, they decide 
to cooperate in order to find an efficient solution. Having decided the cooperative 
function, we need to merely solve an LP for finding the cooperative efficient solution. 

Further research would find the conditions of existing efficient solution. If the 
BLP problem can be verified to contain the efficient optimal solution, it would not 
be necessary for both DMs to cooperate in order to improve their objective function 
values. Research in real applications by using the proposed algorithm would also 
be desired. Finally, the cooperation concept could be easily extended to the general 
multilevel linear programming problem. 
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